Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Statistical Tools for Finance and Insurance
  Großes Bild
 
Statistical Tools for Finance and Insurance
von: Pavel Cizek, Wolfgang Karl Härdle, Rafał Weron
Springer-Verlag, 2005
ISBN: 9783540273950
509 Seiten, Download: 6058 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Contents 5  
  Contributors 17  
  Preface 19  
  Part I Finance 23  
     1 Stable Distributions 25  
        1.1 Introduction 25  
        1.2 Definitions and Basic Characteristics 26  
           1.2.1 Characteristic Function Representation 28  
           1.2.2 Stable Density and Distribution Functions 30  
        1.3 Simulation of stable Variables 32  
        1.4 Estimation of Parameters 34  
           1.4.1 Tail Exponent Estimation 35  
           1.4.2 Quantile Estimation 37  
           1.4.3 Characteristic Function Approaches 38  
           1.4.4 Maximum Likelihood Method 39  
        1.5 Financial Applications of Stable Laws 40  
     2 Extreme Value Analysis and Copulas 49  
        2.1 Introduction 49  
           2.1.1 Analysis of Distribution of the Extremum 50  
           2.1.2 Analysis of Conditional Excess Distribution 51  
           2.1.3 Examples 52  
        2.2 Multivariate Time Series 57  
           2.2.1 Copula Approach 57  
           2.2.2 Examples 60  
           2.2.3 Multivariate Extreme Value Approach 61  
           2.2.4 Examples 64  
           2.2.5 Copula Analysis for Multivariate Time Series 65  
           2.2.6 Examples 66  
     3 Tail Dependence 69  
        3.1 Introduction 69  
        3.2 What is Tail Dependence? 70  
        3.3 Calculation of the Tail-dependence Coefficient 73  
           3.3.1 Archimedean Copulae 73  
           3.3.2 Elliptically-contoured Distributions 74  
           3.3.3 Other Copulae 78  
        3.4 Estimating the Tail-dependence Coefficient 79  
        3.5 Comparison of TDC Estimators 82  
        3.6 Tail Dependence of Asset and FX Returns 85  
        3.7 Value at Risk – a Simulation Study 88  
     4 Pricing of Catastrophe Bonds 97  
        4.1 Introduction 97  
           4.1.1 The Emergence of CAT Bonds 98  
           4.1.2 Insurance Securitization 100  
           4.1.3 CAT Bond Pricing Methodology 101  
        4.2 Compound Doubly Stochastic Poisson Pricing Model 103  
        4.3 Calibration of the Pricing Model 104  
        4.4 Dynamics of the CAT Bond Price 108  
     5 Common Functional Implied Volatility Analysis 119  
        5.1 Introduction 119  
        5.2 Implied Volatility Surface 120  
        5.3 Functional Data Analysis 122  
        5.4 Functional Principal Components 125  
           5.4.1 Basis Expansion 127  
        5.5 Smoothed Principal Components Analysis 129  
           5.5.1 Basis Expansion 130  
        5.6 Common Principal Components Model 131  
     6 Implied Trinomial Trees 139  
        6.1 Option Pricing 140  
        6.2 Trees and Implied Trees 142  
        6.3 Implied Trinomial Trees 144  
           6.3.1 Basic Insight 144  
           6.3.2 State Space 146  
           6.3.3 Transition Probabilities 148  
           6.3.4 Possible Pitfalls 149  
        6.4 Examples 151  
           6.4.1 Pre-speci.ed Implied Volatility 151  
           6.4.2 German Stock Index 156  
     7 Heston’s Model and the Smile 165  
        7.1 Introduction 165  
        7.2 Heston’s Model 167  
        7.3 Option Pricing 170  
           7.3.1 Greeks 172  
        7.4 Calibration 173  
           7.4.1 Qualitative E.ects of Changing Parameters 175  
           7.4.2 Calibration Results 177  
     8 FFT-based Option Pricing 187  
        8.1 Introduction 187  
        8.2 Modern Pricing Models 187  
           8.2.1 Merton Model 188  
           8.2.2 Heston Model 189  
           8.2.3 Bates Model 191  
        8.3 Option Pricing with FFT 192  
        8.4 Applications 196  
     9 Valuation of Mortgage Backed Securities: from Optimality to Reality 205  
        9.1 Introduction 205  
        9.2 Optimally Prepaid Mortgage 208  
           9.2.1 Financial Characteristics and Cash Flow Analysis 208  
           9.2.2 Optimal Behavior and Price 208  
        9.3 Valuation of Mortgage Backed Securities 216  
           9.3.1 Generic Framework 217  
           9.3.2 A Parametric Speci.cation of the Prepayment Rate 219  
           9.3.3 Sensitivity Analysis 222  
     10 Predicting Bankruptcy with Support Vector Machines 229  
        10.1 Bankruptcy Analysis Methodology 230  
        10.2 Importance of Risk Classification in Practice 234  
        10.3 Lagrangian Formulation of the SVM 237  
        10.4 Description of Data 240  
        10.5 Computational Results 241  
     11 Econometric and Fuzzy Modelling of Indonesian Money Demand 253  
        11.1 Speci.cation of Money Demand Functions 254  
        11.2 The EconometricApproach to Money Demand 256  
           11.2.1 Econometric Estimation of Money Demand Functions 256  
           11.2.2 Modelling Indonesian Money Demand with Econometric Techniques 258  
        11.3 The Fuzzy Approach to Money Demand 264  
           11.3.1 Fuzzy Clustering 264  
           11.3.2 The Takagi-Sugeno Approach 265  
           11.3.3 Model Identi.cation 266  
           11.3.4 Modelling Indonesian Money Demand with Fuzzy Techniques 267  
        11.4 Conclusions 270  
     12 Nonparametric Productivity Analysis 275  
        12.1 The Basic Concepts 276  
        12.2 Nonparametric Hull Methods 280  
           12.2.1 Data Envelopment Analysis 281  
           12.2.2 Free Disposal Hull 282  
        12.3 DEA in Practice: Insurance Agencies 283  
        12.4 FDH in Practice: Manufacturing Industry 285  
  Part II 292  
     13 Loss Distributions 293  
        13.1 Introduction 293  
        13.2 Empirical Distribution Function 294  
        13.3 Analytical Methods 296  
           13.3.1 Log-normal Distribution 296  
           13.3.2 Exponential Distribution 297  
           13.3.3 Pareto Distribution 299  
           13.3.4 Burr Distribution 302  
           13.3.5 Weibull Distribution 302  
           13.3.6 Gamma Distribution 304  
           13.3.7 Mixture of Exponential Distributions 306  
        13.4 Statistical Validation Techniques 307  
           13.4.1 Mean Excess Function 307  
           13.4.2 Tests Based on the Empirical Distribution Function 309  
           13.4.3 Limited Expected Value Function 313  
        13.5 Applications 315  
     14 Modeling of the Risk Process 323  
        14.1 Introduction 323  
        14.2 Claim Arrival Processes 325  
           14.2.1 Homogeneous Poisson Process 325  
           14.2.2 Non-homogeneous Poisson Process 327  
           14.2.3 Mixed Poisson Process 330  
           14.2.4 Cox Process 331  
           14.2.5 Renewal Process 332  
        14.3 Simulation of Risk Processes 333  
           14.3.1 Catastrophic Losses 333  
           14.3.2 Danish Fire Losses 338  
     15 Ruin Probabilities in Finite and Infinite Time 345  
        15.1 Introduction 345  
           15.1.1 Light- and Heavy-tailed Distributions 347  
        15.2 Exact Ruin Probabilities in Infinite Time 350  
           15.2.1 No Initial Capital 351  
           15.2.2 Exponential Claim Amounts 351  
           15.2.3 Gamma Claim Amounts 351  
           15.2.4 Mixture of Two Exponentials Claim Amounts 353  
        15.3 Approximations of the Ruin Probability in Infinite Time 354  
           15.3.1 Cram´ er–Lundberg Approximation 355  
           15.3.2 Exponential Approximation 356  
           15.3.3 Lundberg Approximation 356  
           15.3.4 Beekman–Bowers Approximation 357  
           15.3.5 Renyi Approximation 358  
           15.3.6 De Vylder Approximation 359  
           15.3.7 4-moment Gamma De Vylder Approximation 360  
           15.3.8 Heavy Tra.c Approximation 362  
           15.3.9 Light Tra.c Approximation 363  
           15.3.10 Heavy-light Tra.c Approximation 364  
           15.3.11 Subexponential Approximation 364  
           15.3.12 Computer Approximation via the Pollaczek-Khinchin Formula 365  
           15.3.13 Summary of the Approximations 366  
        15.4 Numerical Comparison of the Infinite Time Approximations 367  
        15.5 Exact Ruin Probabilities in Finite Time 371  
           15.5.1 Exponential Claim Amounts 372  
        15.6 Approximations of the Ruin Probability in Finite Time 372  
           15.6.1 Monte Carlo Method 373  
           15.6.2 Segerdahl Normal Approximation 373  
           15.6.3 Diffusion Approximation 375  
           15.6.4 Corrected Di.usion Approximation 376  
           15.6.5 Finite Time De Vylder Approximation 377  
           15.6.6 Summary of the Approximations 378  
        15.7 Numerical Comparison of the Finite Time Approximations 378  
     16 Stable Difiusion Approximation of the Risk Process 385  
        16.1 Introduction 385  
        16.2 Brownian Motion and the Risk Model for Small Claims 386  
           16.2.1 Weak Convergence of Risk Processes to Brownian Motion 387  
           16.2.2 Ruin Probability for the Limit Process 387  
           16.2.3 Examples 388  
        16.3 Stable Levy Motion and the Risk Model for Large Claims 390  
           16.3.1 Weak Convergence of Risk Processes to a-stable Levy Motion 391  
           16.3.2 Ruin Probability in the Limit Risk Model for Large Claims 392  
           16.3.3 Examples 394  
     17 Risk Model of Good and Bad 399  
        17.1 Introduction 399  
        17.2 Fractional Brownian Motion and the Risk Model of Good and Bad Periods 400  
        17.3 Ruin Probability in the Limit Risk Model of Good and Bad Periods 403  
        17.4 Examples 406  
     18 Premiums in the Individual and Collective Risk Models 411  
        18.1 Premium Calculation Principles 412  
        18.2 Individual Risk Model 414  
           18.2.1 General Premium Formulae 415  
           18.2.2 Premiums in the Case of the Normal Approximation 416  
           18.2.3 Examples 417  
        18.3 Collective Risk Model 420  
           18.3.1 General Premium Formulae 421  
           18.3.2 Premiums in the Case of the Normal and Translated Gamma Approximations 422  
           18.3.3 Compound Poisson Distribution 424  
           18.3.4 Compound Negative Binomial Distribution 425  
           18.3.5 Examples 427  
     19 Pure Risk Premiums under Deductibles 431  
        19.1 Introduction 431  
        19.2 General Formulae for Premiums Under Deductibles 432  
           19.2.1 Franchise Deductible 433  
           19.2.2 Fixed Amount Deductible 435  
           19.2.3 Proportional Deductible 436  
           19.2.4 Limited Proportional Deductible 436  
           19.2.5 Disappearing Deductible 438  
        19.3 Premiums Under Deductibles for Given Loss Distributions 440  
           19.3.1 Log-normal Loss Distribution 441  
           19.3.2 Pareto Loss Distribution 442  
           19.3.3 Burr Loss Distribution 445  
           19.3.4 Weibull Loss Distribution 449  
           19.3.5 Gamma Loss Distribution 451  
           19.3.6 Mixture of Two Exponentials Loss Distribution 453  
        19.4 Final Remarks 454  
     20 Premiums, Investments, and Reinsurance 457  
        20.1 Introduction 457  
        20.2 Single-period Criterion and the Rate of Return on Capital 460  
           20.2.1 Risk Based Capital Concept 460  
           20.2.2 How to Choose Parameter Values? 461  
        20.3 The Top-down Approach to Individual Risks Pricing 463  
           20.3.1 Approximations of Quantiles 463  
           20.3.2 Marginal Cost Basis for Individual Risk Pricing 464  
           20.3.3 Balancing Problem 465  
           20.3.4 A Solution for the Balancing Problem 466  
           20.3.5 Applications 466  
        20.4 Rate of Return and Reinsurance Under the Short Term Criterion 467  
           20.4.1 General Considerations 468  
           20.4.2 Illustrative Example 469  
           20.4.3 Interpretation of Numerical Calculations in Example 2 471  
        20.5 Ruin Probability Criterion when the Initial Capital is Given 473  
           20.5.1 Approximation Based on Lundberg Inequality 473  
           20.5.2 Zero” Approximation 475  
           20.5.3 Cram´ er–Lundberg Approximation 475  
           20.5.4 Beekman–Bowers Approximation 476  
           20.5.5 Di.usion Approximation 477  
           20.5.6 De Vylder Approximation 478  
           20.5.7 Subexponential Approximation 479  
           20.5.8 Panjer Approximation 479  
        20.6 Ruin Probability Criterion and the Rate of Return 481  
           20.6.1 Fixed Dividends 481  
           20.6.2 Flexible Dividends 483  
        20.7 Ruin Probability, Rate of Return and Reinsurance 485  
           20.7.1 Fixed Dividends 485  
           20.7.2 Interpretation of Solutions Obtained in Example 5 486  
           20.7.3 Flexible Dividends 488  
           20.7.4 Interpretation of Solutions Obtained in Example 6 489  
        20.8 Final Remarks 491  
  Part III 494  
     21 Working with the XQC 495  
        21.1 Introduction 495  
        21.2 The XploRe Quantlet Client 496  
           21.2.1 Con.guration 496  
           21.2.2 Getting Connected 497  
        21.3 Desktop 498  
           21.3.1 XploRe Quantlet Editor 499  
           21.3.2 Data Editor 500  
           21.3.3 Method Tree 505  
           21.3.4 Graphical Output 507  
  Index 511  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz